

"Electro-thermal Applications of Nanomaterials"

June 17th, 2021

Prof. Antonio Maffucci

maffucci@unicas.it

Department of Electrical and Information Engineering University of Cassino and Southern Lazio Cassino, ITALY NEXT Nanotechnology Laboratory National Institute for Nuclear Physics INFN-LNF, Frascati ITALY

INFN

Antonio Maffucci, "Electro-thermal Applications of Nanomaterials" 17 June, 2021, INP-BSU, Minsk (Belarus)

Electro-thermal effects and applications: heat management in printed circuit boards

Issue: high temperatures and hot spots

Solutions:

Passive heat removal:

- Materials (new materials)
- Architectures (layouts, heatsink, thermal interfaces,...)
- Active heat removal - cooling systems

CONSIGNATION OF THE PROPERTY O

Electro-thermal effects and applications: heat management in integrated circuits

Electro-thermal effects and applications: temperature-based devices

Resistive Random Access Memory

The **resistance value** is associated to a conductive filament made by **ions** emitted by the **active electrodes** under the action of the applied voltage

SET: Switching to Low Resistance State (LRS) **RESET:** Switching to High Resistance State (HRS) The **reset** occurs when a critical temperature is reached: **NEED for a strict control of the temperature distribution**

2DSeqSe Project: 2D material-based low cost SENSor of aggressive substancEs Antonio Maffucci, "Electro-thermal Applications of Nanomaterials" 17 June, 2021, INP-BSU, Minsk (Belarus)

Electro-thermal effects and applications: Resistive Random Access Memory

Electro-thermal effects and applications: actuators

heating elements based on Joule effect

De-icing heaters for airplane wings

Electro-thermal effects and applications: sensors

Thermristors

A type of resistor with resistance varying with temperature.

Temperature sensing is achieved by measuring the change in resistance:

 $\Delta R = k \Delta T$

where

 ΔR = change in resistance

 ΔT = change in temperature

k = first-order temperature coefficient of resistance

Thermristor types: NTC and PTC

Project: 2D material-based low cost SENSor of aggressive substancEs Antonio Maffucci, "Electro-thermal Applications of Nanomaterials" 17 June, 2021, INP-BSU, Minsk (Belarus)

Electro-thermal applications

Electrothermal modelling

- Multiphysics modelling
- Relaxation technique
- Equivalent circuit modelling
- Reduced order modelling

Simulation and characterization evidence

Carbon-based materials for electro-thermal applications

Antonio Maffucci, "Electro-thermal Applications of Nanomaterials" 17 June, 2021, INP-BSU, Minsk (Belarus)

A «multiphysics» problem

of aggressive substancEs

2DSense

An iterative approach (relaxation technique)

An equivalent circuit model: the example of a Power Delivery Network

for each PDN track:

- A thermal resistance (thermal conductivity K_m)
- Power grid branch < characteristic thermal length, L_H
- Heat sources modeled as current sources
- Package represented by a thermal resistance.

Electrical network node

Thermal network node

A (discretized) thermal problem is equivalent to an electrical network, where

 $V \leftrightarrow T \text{ and } I \leftrightarrow p$

Step 1: Steady state solution for the full PDN

Temperature map

Voltage drop map

For a given frequency, the **ET steady-state problem** reduces to a system of linear algebraic equations, with sparse matrices

ightarrow the ET problem is efficiently solved by numerical solvers with a limited cost

Antonio Maffucci, "Electro-thermal Applications of Nanomaterials" 17 June, 2021, INP-BSU, Minsk (Belarus)

Model-order reduction via clustering

Step 2: Define a quantization level

$$\Delta T_r = \left(T_{r,\max} - T_{r,\min}\right) / (N_T - 1)$$

$$\Delta V_d = \left(V_{d,\max} - V_{d,\min} \right) / (N_V - 1)$$

 N_V quantization levels for voltage drop

STEP 3: cluster the network nodes into supernodes

The same approach is applied for the thermal network

Step 5: synthesize and solve the final SPICE model

A. Maffucci, A. Magnani, M. de Magistris, A. Todri-Sanial, IEEE T-NANO, 2016 2DSense Project: 2D mate of aggres

Project: 2D material-based low cost SENSor of aggressive substancEs Antonio Maffucci, "Electro-thermal Applications of Nanomaterials" 17 June, 2021, INP-BSU, Minsk (Belarus)

Electro-thermal applications

Electrothermal modelling

Simulation and characterization evidence

Carbon-based materials for electro-thermal applications

- Graphene and carbon nanotubes
- Graphene nanoplatelets
- Modelling the electrothermal behavior

PARTNERS: CREATE Consortium, Naples, Italy - Institute for Nuclear Problems, Minsk, Belarus - University of Eastern Finland, Joensuu, Finland

Superior thermal and electrical properties of nanomaterials

	Si	Cu	Carbon Nanotubes	Graphene
Max current density (A/cm ²)		107	109	108
Mean free path @ T=300 K (nm)	30	40	$10^3 - 2.5 \cdot 10^4$	10 ³
Melting point (K)	1687	1356	3800	3800
Thermal conductivity (kW/mK)	0.15	0.38	1.7 - 5.8	3.0-5.0

For their outstanding electrical and thermal properties, graphene and carbon nanotubes are proposed for:

Thermal interface materials (packaging) NTC Thermristors (sensors) Heaters (de-icing)

Thermal management in electronics

Example: thermal management in packages

In ultrascaled VLSI technology the **current densities** are of the order of **MA/cm²**, leading to a volumetric **heat production** of the order of **10³-10⁴ W/mm** (ITRS)

MAIN BENEFITS FROM USING CARBON:

- **Carbon interconnects**: may carry a density of current 2 order of magnitude higher that Cu ones, while reducing the heat production (due to stability of resistance with temperature)
- Graphene TIM: thermal interface materials based on GNP may increase efficiency of heat transfer by 80 percent

Project: 2D material-based low cost SENSor of aggressive substancEs

Industrial graphene: technological limits

The industrial production of large graphene films is **not realistic** due to the costs Low-cost graphene-like materials are proposed such as **Graphene Nanoplatelets (GNPs)**

Typical sizes -plane: 5 - 10 μm -Thickness: 20-50 nm Quality

Films of low-cost graphene may be realized starting from GNPs

W. Ren, H.-M. Cheng, Nature Nanotechnology, 2014

about sensing

Modelling the electrical resistivity vs temperature: conventional materials

OHM's law (from Drude model) for temperature T varying

 $\boldsymbol{E} = \frac{m_e}{e^2 n \tau} \boldsymbol{J} = \rho \boldsymbol{J}$

$$\rho = \frac{m_e}{e^2 n \tau} = \frac{m_e v_e(T)}{e^2 n l_{mfp}(T)} \quad \text{(increases with T)}$$
mean free path
(decreases with T)

The resistivity is always an increasing function of temperature (PTC)

Linear approximation

$$\rho(T) = \rho_0 [1 + \beta (T - T_0)]$$

 ρ_0 = resistivity at T=T₀

$$\beta$$
 = temperature coefficient

<i>T₀</i> = 20 °C	Bulk W>160 nm	W = 44 nm	W = 22 nm		
ρ_0 (10 ⁻⁸ Ωm)	1.68	3.29	6.01		
β (K ⁻¹)	0.0039	0.0016	0.0012		
Values for a copper wire of width W					

Modelling the electrical resistivity vs temperature: carbon nanotubes

Electrical resistance model for a carbon nano-interconnect

2DSeqSe Project: 2D material-based low cost SENSor of aggressive substancEs

Modelling the electrical resistivity vs temperature: graphene nanoplatelets

Electrical conduction along a single GNP:

- equivalent resistance of a GNP: $R_{GNP}(T) = \frac{r_0}{l_{mfp}(T)M(T)} len_{GNP}$

Electrical conduction between two adjacent GNPs:

- resistance due to the contact, $R_{cont}(T)$
- resistance due to tunneling and hopping, $R_{tun_hop}(T)$

 l_{mfp} decreases as T^{-2} [1] M increases as T [1] R_{cont} increases as T [1] $R_{tun_{hop}}$ decreases as $T^{-1/4}$ [2]

The counteracting behavior of these parameters may lead to **any sign for TCR**

[1] A. Maffucci et al., IEEE T. CPMT, 2017

[2] S. Zhao et al., Journal of Materials Chemistry C, 2017

Electro-thermal modelling of a large PDN with the reduced-order technique (clustering)

Power is fed from package through C4 bumps and distributed over the PDN

The GND grid is connected to a heat sink

We assume a single core of 20 x 20 mm, with power density 1.5 μ W/ μ m²

Typical values of parameters for a PDN of 45nm technology (from ITRS)

Ther	nal param	eters		Electri	cal param	eters	
R _{TH} [kK/W]	R _{HS} [MK/W]	Т ₀ [°С]	V _{DD} [V]	C _o [aF]	l _o [mA]	R _{PKG} [Ω]	R _s [Ω]
8.473	0.8437	27	1.0	4.08	0.1	0.01	0.056

Electro-thermal modelling of a large PDN with the reduced-order technique (clustering)

Antonio Maffucci, "Electro-thermal Applications of Nanomaterials" 17 June, 2021, INP-BSU, Minsk (Belarus)

Power integrity analysis for carbon-based PDNs

Signal and thermal integrity analysis

Graphene sensors (thermristors)

2D material-based low cost SENSor of aggressive substancEs

)SEASE

Flexible wearable temperature sensors:

- (a) stretchable graphene thermistor with AgNW (Ag nanowire) electrodes as contacts at relaxed state;
- (b) its I-V curves when temperature changing from 30 to 100 $^\circ\mathrm{C}$
- (c) transient response to changing temperature at 0 and 50% strains

C. Yan, et al. ACS Nano 2015

Antonio Maffucci, "Electro-thermal Applications of Nanomaterials" 17 June, 2021, INP-BSU, Minsk (Belarus)

Experimental evidence of NTC behavior: lab materials

S. Bellucci, IEEE Tran. on CPMT, 2017.

Resistance vs temperature

simulated

measured

360

-simulated

measured

360

380

380

340

340

Project: 2D material-based low cost SENSor of aggressive substancEs

Experimental evidence of NTC behavior: industrial material

- 1) **GNP production:** from graphite, by liquid exfoliation technology
- 2) mixture formulation: GNP particles are dispersed in solvent and sonicated with a polymeric binder
- **3) spray deposition**: the mixture is sprayed at a controlled pressure, by using a semiautomatic 3-axes pantograph.
- **4) calendering**: in order to obtain a compact sheet and optimize the final thickness/alignment ratio for each material

MATERIALS ANALYZED HERE:

Material	GNPs (%)	Binder (type)	Thickness (µm)	Width (mm)	Length (mm)
G-Paper	100		55	10	180
G-PREG (95/5)	95	polyurethane	75	10	180
G-PREG (70/30)	70	ероху	75	10	180

2DSeqse Project: 2D material-based low cost SENSor of aggressive substancEs

Experimental evidence of NTC behavior: graphene strip characterization

PARTNERS: CREATE Consortium, Naples, Italy - Institute for Nuclear Problems, Minsk, Belarus - University of Eastern Finland, Joensuu, Finland

pag.35/39

Experimental evidence of NTC behavior: graphene strip characterization

The electrical resistance is a **decreasing function** of the temperature for all materials (NTC materials) A modest effect of **hysteresis** can be observed for the composite materials, with a maximum difference of about 2% for G-Preg (95/5) and 3% for G-Preg (70/30)

Linear model for the equivalent resistivity

Linear approximation $\rho(T) = \rho_0 [1 + \beta (T - T_0)]$

The same model as for conventional conductors

<i>T₀</i> = 20 °C	Cu (bulk)	G-paper	G-Preg (95/5)	G-Preg (70/30)
$ ho_0 \ (10^{-8} \ \Omega m)$	1.68	747	2295	3095
β (K ⁻¹)	0.0039	-0.0016	-0.0010	-0.012

S. Sibilia, et al., A. Maffucci, Nanotechnology, 2021

Conclusions

- The **electro-thermal** behavior of materials may lead to **issues** (heat problems in integrated circuits) but also to **opportunities** (thermristors as sensors, thermal-enabled memristors)
- To overcome the present limits and to catch the foreseen opportunities, novel nano-materials based on carbon are proposed, due to their excellent electrical and thermal properties
- Carbon nanotube interconnects and graphene thermal material interfaces are predicted to dramatically **mitigate the issues** related to heat management in integrated circuits
- Industrial graphene (such as graphene nanoplatelets), with poorer quality, is still a valid choice for electro-thermal applications
- GNP strips have proven to behave as a **negative temperature coefficient (NTC) material**, with a linear response in a large temperature range.

