Modeling the communication process at the deep physical layer level

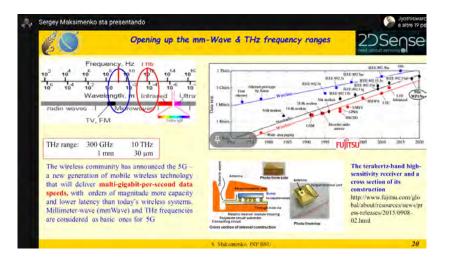
Marco Donald Migliore

Universita' di Cassino e del Lazio Meridionale, Cassino, Italia Eledia@UniCAS, Cassino, Italia

md.migliore@unicas.it

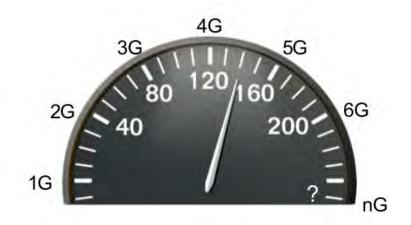
11 June 2021

From the lecture of Sergey Maksimenko, 31 May 2021



イロト イヨト イヨト イヨト

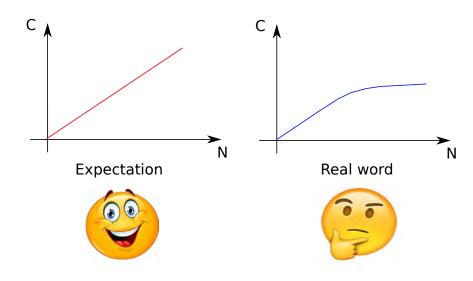
How fast can we run ?



Marco Donald Migliore Modeling the communication process at the deep physical layer

イロト イヨト イヨト イヨト

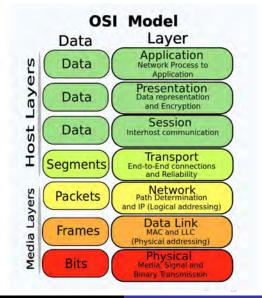
Something missed?



イロト イヨト イヨト イヨト

臣

OSI model



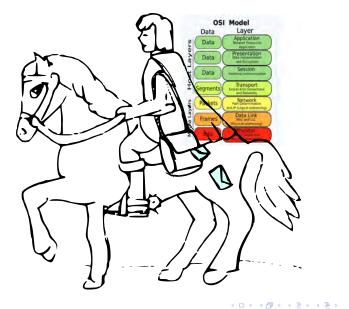
Marco Donald Migliore

Modeling the communication process at the deep physical laye

Horse and horseman

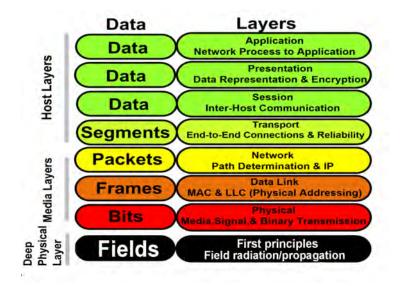
臣

Horse and horseman



Ð,

The deep physical layer



イロト イヨト イヨト イヨト

Some cornerstones in the history of communication

1873 A treatise on electricity and magnetism

1948 A mathematical theory of communication

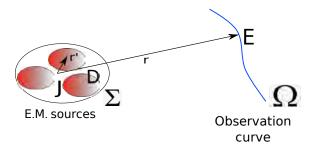
Marco Donald Migliore Modeling the communication process at the deep physical layer

Some cornerstones in the history of communication

1873 A treatise on electricity and magnetism

1948 A mathematical theory of communication 1959 ε-entropy and ε-capacity sets in functional spaces

The radiation operator



$$\mathsf{E}(\mathsf{r}) = \int_D \mathsf{G}(\mathsf{r},\mathsf{r}')\cdot\mathsf{J}(\mathsf{r}')d\mathsf{r}' \quad \mathsf{r}'\in\Omega$$

J: current distributions in D, E: field distribution on Ω . The radiation integral is a linear operator that maps current distributions into field distributions

Let us introduce a complete orthonormal basis for the current distribution on D and a complete orthonormal basis for the field distribution on Ω

$$J(r') = \sum_{1}^{\infty} x_k f_k(r')$$
$$E(r) = \sum_{1}^{\infty} y_k g_k(r)$$

Geometrically, x_k can be seen as the k - th coordinate of a point x belonging to the infinite-dimensional Hilbert space having $f_1(r), f_2(r), ..., f_k(r), ...$ as basis functions. The same for y_k

An important property of the radiation operator

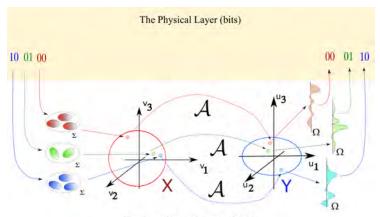
 \mathcal{A} is a compact operator. The Hilbert-Schmidt decomposition of \mathcal{A} gives a basis v_k for the currents and a basis u_k for the field that allows the diagonalization of the infinite matrix \mathcal{A}

 $y_1 = \sigma_1 x_1$ $y_2 = \sigma_2 x_2$ \dots $y_k = \sigma_k x_k$

σ_k are the singular values of \mathcal{A}

$$\begin{split} \lim_{k\to\infty}\sigma_k &= 0\\ \text{The matrix } A \text{ has an almost finite rank } !\\ \mathcal{A} \text{ maps a hypersphere in a hyperhellipsoid having almost finite dimensions} \end{split}$$

Geometrical interpretation in functional spaces

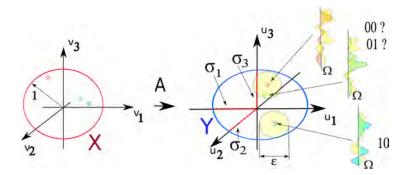


The Deep Physical Layer (fields)

 $\begin{array}{l} X: \mbox{ set of all the current distributions on } D \\ Y: \mbox{ set of all the field distributions on } \Omega \\ The radiation operator \mathcal{A} maps elements of X into elements of Y } \end{array}$

• • = • • = •

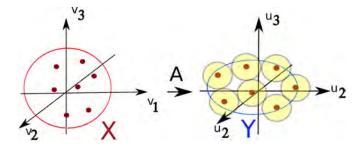
The presence of noise



Due to the presence of noise two field configurations whose distance is smaller than ϵ are indistinguishable.

The number of distinguishable configurations in presence of ϵ uncertainty is equal to maximum number of ϵ -balls that we can pack in Y

Kolmogorov *e*-capacity



The \log_2 of the maximum number of distinguishable configurations in presence of ϵ uncertainty is caller the Kolmogorov ϵ -capacity

The Kolmogorv ϵ capacity is the maximum amount of information expressed in bits that can be reliably transmitted along the spatial channel

The effective dimension of the Y set is called the Number of Degrees of Freedom of the field (NDF)

How much information can we transmit?

$$E(r) = \sum_{k} y_{k} u_{k}(r)$$
$$y_{1} = \sigma_{1} x_{1}$$
$$y_{2} = \sigma_{2} x_{2}$$
....

 $y_{NDF} = \sigma_{NDF} x_{NDF}$

The number of bits is equal to the Kolmogorov ϵ -capacity

$$\mathcal{C}_{\epsilon}(Y)\simeq\sum_{k=1}^{\textit{NDF}}\log_{2}\left(rac{\sigma_{k}}{\epsilon}
ight)$$

The amount of information that can be reliably transmitted is limited by the *NDF* of the field.

Modeling the communication process at the deep physical laye

How many NDF do we have?

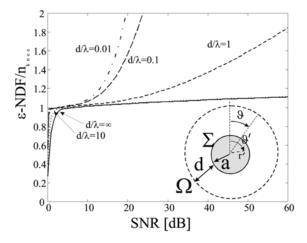


Fig. 5. $\epsilon - NDF$ as a function of the Signal/Noise Ratio (SNR) normalized to $n_{\rm knee}$ for different values of the distance d/λ of the observation circle from the circle including the sources; inset: geometry of the problem;.

The Deep Physical Layer describes the physical mechanisms at the basis of the communication process using standard tools of functional analysis.

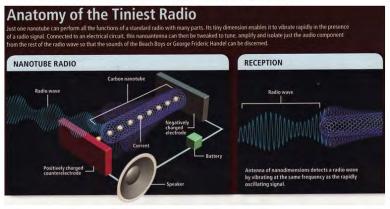
The Deep Physical Layer gives a framework to describe the physical process of communication at different details, up to quantum level.

... is this something interesting?

・ 同 ト ・ ヨ ト ・ ヨ ト

February 27, 2009

World's smallest radio consists of 1 carbon nanotube - listen to it play 'Layla'



Nanoradio - Alex Zettl's group, University of California, Berkeley (image from https://www.bookofioe.com/2009/02/nanotube-radio.html)

・ロト ・日ト ・ヨト ・ヨト

A nanonetwork or nanoscale network is a set of interconnected nanomachines which are able to perform only very simple tasks such as computing, data storing, sensing and actuation.

(4月) トイヨト イヨト

Nanonetworking is one of the newest research trends in communication networks!

IEEE P1906.1 - Recommended Practice for Nanoscale and Molecular Communication Framework

Marco Donald Migliore Modeling the communication process at the deep physical layer

< ロ > < 同 > < 三 > < 三 >

Special Issue on Nanonetworking - May 2021

IEEE Communications Magazine May 2021

SPECIAL ISSUE

Nano-Networking for Nano-, Micro-, Macro-Scale Applications SERIES TOPIC Data Science and Artificial Intelligence for Communications

YOU MUST BE SIGNED IN AND SUBSCRIBED IF YOU'D LIKE TO DOWNLOAD THIS ISSUE.

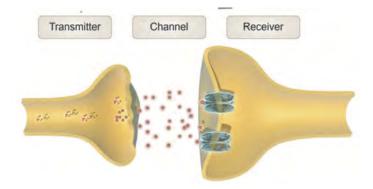
IEEE XPLORE VERSION

< ロ > < 同 > < 三 > < 三 >

In electromagnetic nanonetworks, artificial nanomachines communicate using electromagnetic radiation emitted by nanoantennas.

The Deep Physical Layer gives a natural framework for EM-based nanonetworks.

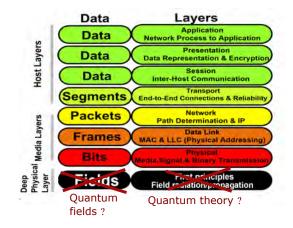
A (10) × (10) × (10)



The Deep Physical Layer approach can be extended to include molecular nanonetworks (wave equation \rightarrow diffusione equation) Is it enough?

A (10) < A (10) < A (10)</p>

Beyond classic electrodinamics communication systems

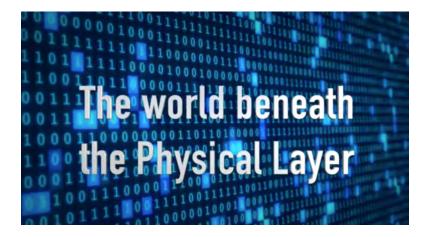


What does happen in the nano-world communications? I have no idea, but surely...

there's plenty of room at the bottom!

ロトス団トスヨトスヨト

The world beneath the physical layer



https://youtu.be/8qp7GzIIKHI.

Marco Donald Migliore Modeling the communication process at the deep physical layer